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Abstract. The  Lagrangian  formulation  of classical 
mechanics and  its  applications  figure  prominently in the 
educational  literature.  Yet  systems  with  variable  mass  are 
summarily  excluded  from  this  formulation  and  discussed 
in terms  of  Newtonian  theory  only.  This  omission is 
neither  technically  justified nor  desirable  from  a 
pedagogical  point  of view, because  it  might  suggest to  the 
student  that  such  systems  are  beyond  the  scope  of  the 
Lagrangian  approach.  Therefore, we show  that  the 
formalism  can  be  readily  extended  to  include  those 
variable  mass  systems  that  are  treated  in  the  textbooks  in 
a  Newtonian  fashion,  and  its  application is illustrated by 
means  of  three  instructive  examples. 

1. Introduction 

Because  of  its far  reaching relevance for various fields 
of  theoretical physics, most  mechanics  texts  devote 
a chapter or two  to  the  Lagrangian  formulation of 
classical mechanics. Some even start  with  Lagrangian 
dynamics  (Landau  and Lifshitz 1960, Kilmister 1967). 
Indeed,  the  Lagrangian  formulation  greatly facilitates 
a change of coordinates, it  allows constraints  to be 
most easily incorporated, symmetries to be systemati- 
cally exploited  using  Noether’s  theorem,  and it is 
the  starting  point  for  the  Hamiltonian  formulation, 
which,  in turn, is the basis of  the  transition  to a quan- 
tum  mechanical  description of the system under 
study. 

On  the  other  hand,  most of  these texts also  contain 
a brief discussion  of  systems  with variable  mass like 
the  motion of  a rocket expelling exhaust  gas at a 
constant  rate.  However, these problems  invariably 
appear  only in the  Newtonian  formulation.  From  the 
pedagogical point of view, this is an  undesirable 
restriction, since it seems to suggest an  unwarranted 
limitation of the  otherwise very powerful Lagrangian 
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Zusammenfassung. Die  meisten  Lehrbucher  tragen  der 
Lagrangeschen  Formulierung  der  Klassischen  Mechanik 
und  ihren  Anwendungen  gebiihrend  Rechnung.  Allerdings 
beschranken sie sich dabei  durchwegs  auf  die  Diskussion 
von  Systemen  mit  konstanter  Masse:  solche mit 
veranderlicher  Masse  werden  immer  nur  im  Rahmen  des 
Newtonschen  Zuganges  behandelt.  Diese  Einschrankung 
ist aber  nicht  nur  technisch  unnotig,  sondern  auch 
padagogisch  sehr  ungunstig, da die  Studenten  daraus 
schlieBen konnten,  solche  Systeme seien dem 
Lagrangeschen  Formalismus  nicht  zuganglich.  Deshalb 
zeigen wir, daB sich der  Formalismus  unschwer  auf alle 
jene  Falle  mit  variabler  Masse  ausdehnen  la&  die in den 
Lehrbuchern  mit  der  Newtonschen  Methode  behandelt 
werden,  und  wenden  ihn  auf  drei  instruktive Beispiele an. 

formalism.  It is true  that in the  literature  there is an 
occasional  mention of  a Lagrangian  for a particular 
variable-mass system (Ray 1979), but  without giving 
its origin, let alone a systematic  derivation of the 
Lagrangians  for  more general  systems. 

We shall therefore  show in this  paper how all stan- 
dard  textbook systems  with variable  mass  may be 
readily incorporated  into  the  Lagrangian  formalism. 
In $2 we first review the  derivation of the  Lagrangian 
from  the  equation of motion, which,  in $3, we 
specialise to simple  systems with  variable  mass.  In $4 
we illustrate  the  formalism with three  instructive 
examples. 

2. Lagrangians from  the equation of motion 

As textbook systems  with variable  mass  are always 
one  dimensional, we also restrict  ourselves to systems 
with one degree  of freedom, in order  to  avoid 
unnecessary complications.  For such  systems Dar- 
boux (1894) showed  almost a century  ago, how 
Lagrangians L(x,  x ,  t) may be associated with their 
equation of motion (see also  Yan 1978, Leubner 
198 l), 

0 = .f - (l/rn)F(x, x, t ) .  (1) 
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In  order  that  the  Euler-Lagrange  equation derived 
from L(x ,  x, t), 

implies (l) ,  we require 

L, - XL,, - L,, = (I /m)F(x,  1, t)Li, (3) 
which is obvious  from rewriting ( 2 )  in the  form 

0 = XLyx + XL,, + L,, - L, 

(Here  and in the following, subscripts  are a shorthand 
for derivatives with respect to  the  corresponding 
variable.) 

With a given force F(x, x, t ) ,  equation (3) is a linear 
partial differential equation in the  three  variables  x, x, 
and t for  the  Lagrangian L(x ,x ,  t). Darboux's idea 
was  to simplify (3) by differentiating  this  equation 
once  more with  respect to x ,  with the result 

(Ilm)F(x,x,  t)Ax + x& + A, = - ( l /m)Fr(x ,x ,  t)A, 

(4) 
where the  abbreviation 

A = L,, (5) 

has been introduced  and  the  order of partial 
derivatives has been suitably  interchanged. 

Along  any  orbit of the system,  where F/m is related 
to x according  to (l),  equation (4) may be written 
more  compactly  as 

dA 1 
dt m 
- = - - F,(x, X, t)A. 

It  has been demonstrated  (Darboux 1894, Yan 
1978, Leubner 1981) how  the general solution of (6) 
can be constructed,  provided  the  solution  to (1) is 
already  known,  and we refer the  interested  reader  to 
the references for  the general  case. However,  there  are 
a number of force  functions F(x, x, t )  corresponding 
to physical  systems  of considerable pedagogical 
interest  and  including in particular  those  appearing in 
textbooks in the  context of variable-mass systems, for 
which a solution  to (6) can be given without  any  prior 
information  about  the  orbit. 

For example, with  the  force  on  the  right-hand side 
of the  damped  harmonic  oscillator  equation, 

mx = -bx - k x  

equation (6) reads 
dA/dt = (b/m)A 

with a solution being 

A(x. x ,  t) = A0exp[(b/m)t]. (7 )  

As another  example  consider a point  mass falling 
subject to a  frictional force of Newtonian  type in a 

homogeneous  gravitational field, with initial con- 
ditions such that  the sign  of x does  not  change, 

This system gives rise to 

dA/dt = (2b/m)xA, 

with a solution being 

A(x, x, t )  = A. exp[(2b/m)x]. (8) 

Once A is known,  the  Lagrangian is found by 
integrating (5) twice with  respect to x, and by subject- 
ing the result to  the  Euler-Lagrange  equation (2) 
(Leubner 1981), 

L = (x - v)A(x,  v, t)dv 
v0 

Note  that  the choice  of the lower  limits  of integration, 
v. and xo, has  no relevance,  since  different  choices 
change  only  the  mechanical  gauge  function 

Thus, with v, = x, = 0, the  Lagrangian  corres- 
R = n(x, t). 

ponding  to (7) is 

L = exp('t)( 2 - ;T)  k 2  + dt dR 

while the  one  corresponding  to (8) is 

where  in both cases the  irrelevant  constant A. has 
been set equal  to  unity. 

3. Lagrangians for simple systems with 
variable mass 

In  order  to  apply  the results  of $2 to  the  construction 
of Lagrangians  for  one-dimensional systems with 
variable  mass, we first require  the  corresponding 
equation of motion.  Many mechanics  texts (Good- 
man  and  Warner 1964, Burghes and  Downs 1975, 
Griffiths 1985) derive this  equation in the following 
manner.  With respect to a chosen  inertial  frame of 
reference, the  momentum of the  body  at  time t + dt is 
(m(?) + dm)(x + dm). Without  the  action of an  exter- 
nal force F ( x , x ,  t ) ,  this momentum  would be the 
momentum  at  time t increased by the  momentum 
acquired  during  dt  as a  result  of adding  the  mass  dm 
with a velocity u(x ,  x ,  t). Hence, the difference between 
the  two  quantities  must be equal  to  the  change  of 
momentum  induced by the  action of  the external 
force, 

[m(t) + dm][x + dx] - [m(t)x + dm u(x, x, t)] 
= F(x, X ,  t)dt 
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from which we find 

m(t)x = F(x, x, t )  + k ( t ) [ u ( x ,  x, t )  - x]. (10) 

The first step in constructing a corresponding 
Lagrangian  consists of  finding  a solution  to  the vari- 
able  mass  equivalent of equation (6), namely, 

There  are  two special  cases  of variable-mass sys- 
tems  that  are of particular  interest.  Case (i) occurs 
when mass is added  to  the  body  at a given rate with 
a given velocity u(x ,  x, t )  = u(t) ,  as in  figure I ,  where 
wind-driven  raindrops  are falling onto a  swinging 
bucket.  In this case U, = 0 and (1  1) reduces to 

Once a solution A to  this  equation is known,  the 
corresponding  Lagrangian  can  be  found  from (9), 
with F in the  second  integral replaced by the right- 
hand side  of (IO).  

Case (ii) occurs when mass is lost a t  a given rate 
with given relative velocity u(x, x, t )  = f + urel(r), as  in 
the  example of  a rocket expelling  gas. In this  case 
u , ~  = 1 and (1 1) reduces  to 

dA 1 
dt m( 0 
" - - - F,(x, x, t )A.  

Again,  once a solution A to this equation is known, 
the  corresponding  Lagrangian  can be found  from (9), 
with F in the  second  integral replaced by the  right- 
hand side of (IO).  

4. Illustrative examples 

4.1. Example: linearly  damped,  swinging  bucket  hit 
by slanted rain 
Here we are  dealing with case (i) (see figure 1). The 
equation  of  motion (IO) becomes 

m(t)x = -bx - m(t)(g/ l)x + (U, - x ) ~ ,  (14) 

Figure 1. The swinging  bucket hit by  slanted  rain 

""i"" 

where p. = k(t) > 0 is the  constant  rate of mass 
increase, U, is the velocity of the  raindrops in the 
x direction  and 1 is the reduced pendulum  length. 
Equation (12) thus becomes 

dr m, + p o t  
with  a solution being 

b + PO A -=p 

Substituting  this  into (9), we find the  Lagrangian 

(1 5 )  
It is a  simple exercise to verify that (1  5 )  indeed 

implies the  equation of motion (14). 

4.2. Example:  linearly  damped,  swinging  bucket 
losing water at a constant rate through a hole in the 
base 
This is case (ii) (see figure 2) with u(x,  x, t )  = f ,  that is, 
with U,,, = 0. The  equation of motion (IO) becomes 
(m, - por)x = - bx - (m, - p o t ) ( g / l ) x  

< molpo (16) 
with the  same  notations  as before. Equation ( 1  3) for 
A reduces to 

dA 
dt m, - p o t  

with  a solution being 

-="- b A  

Substituting  this  into (9), we find the  corresponding 
Lagrangian 

Figure 2. The swinging  bucket  losing  water 

7 
l 
I 

l 
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It is again a  simple exercise to verify that  this 
Lagrangian implies the  equation of motion (16). 

4.3. Example: linearly damped,  vertically 
ascending rocket 

This is again case (ii), with u(x,  x ,  t )  = x - ure l ( t ) ,  
u,,,(t) > 0, m = - p,, h > 0. The  equation of motion 
(10) is in this case 
(WO - p0 03 = - (mo - p0 t k  - 6x + pOu,,,(t) 

t < molpo (18) 
with the  same  notation  as in $4.2. Equation (13) now 
reads 

dA 
dt m, - p o t  
" " b A  

with a  possible solution being 

Inserting  this  into (9), the  corresponding  Lagrangian 
is found  to be 

dR +- dt  
Again,  one  can easily show  that (19) implies the 
equation of motion (18). 

5. Conclusions 

In a n  analogous  manner, a Lagrangian L can  also be 
found  for  those  other mechanical  systems  with  vari- 

able  mass  that  are  treated in the  Newtonian  approach 
in the  textbooks  (Goodman  and  Warner 1964, Burghes 
and  Downs 1975, Griffiths 1985) and which  have not 
been included  in $4. 
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